Geometrical inverse matrix approximation for least-squares problems and acceleration strategies
نویسندگان
چکیده
منابع مشابه
Approximate Generalized Inverse Preconditioning Methods for Least Squares Problems
iv erative methods to solve least squares problems more efficiently. We especially focused on one kind of preconditioners, in which preconditioners are the approximate generalized inverses of the coefficient matrices of the least squares problems. We proposed two different approaches for how to construct the approximate generalized inverses of the coefficient matrices: one is based on the Minim...
متن کاملRegularized total least squares approach for nonconvolutional linear inverse problems
In this correspondence, a solution is developed for the regularized total least squares (RTLS) estimate in linear inverse problems where the linear operator is nonconvolutional. Our approach is based on a Rayleigh quotient (RQ) formulation of the TLS problem, and we accomplish regularization by modifying the RQ function to enforce a smooth solution. A conjugate gradient algorithm is used to min...
متن کاملA Least Squares Functional for Solving Inverse Sturm-Liouville Problems
Abstract. We present a variational algorithm for solving the classical inverse Sturm-Liouville problem in one dimension when two spectra are given. All critical points of the least squares functional are at global minima, which justifies minimization by a (conjugate) gradient descent algorithm. Numerical examples show that the resulting algorithm works quite reliable without tuning for particul...
متن کاملSelf-Calibration and Bilinear Inverse Problems via Linear Least Squares
Whenever we use devices to take measurements, calibration is indispensable. While the purpose of calibration is to reduce bias and uncertainty in the measurements, it can be quite difficult, expensive and sometimes even impossible to implement. We study a challenging problem called self-calibration, i.e., the task of designing an algorithm for devices so that the algorithm is able to perform ca...
متن کاملConvexly constrained linear inverse problems: iterative least-squares and regularization
| In this paper, we consider robust inversion of linear operators with convex constraints. We present an iteration that converges to the minimum norm least squares solution; a stopping rule is shown to regularize the constrained inversion. A constrained Laplace inversion is computed to illustrate the proposed algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Algorithms
سال: 2020
ISSN: 1017-1398,1572-9265
DOI: 10.1007/s11075-019-00862-z